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Group Lasso

• In standard 𝑙1regularization, we assume that there 
is a 1:1 correspondence between parameters and 
variables, so that if  𝑤𝑗=0, we interpret this to mean 
that variable j is excluded. 

• But in more complex models, there may be many 
parameters associated with a given variable.

• In particular, we may have a vector of weights for 
each input, 𝑤𝑗



Some examples

• Examples where group lasso is used:
• Multinomial logistic regression : Each feature is 

associated with C different weights, one per class.

• Linear regression with categorical inputs : Each scalar 
input is one-hot encoded into a vector of length C.

• Multi-task learning: In multi-task learning, we have 
multiple related prediction problems. For example, we 
might have C separate regression or binary classification 
problems. Thus, each feature is associated with C 
different weights. We may want to use a feature for all 
of the tasks or none of the tasks, and thus select weights 
at the group level.



Group lasso

• If we use an 𝑙1 regularizer of the form 𝒘 =  𝑗 𝑐 |𝑤𝑗𝑐|, 
we may end up with with some elements of 𝑤𝑗,: being zero 
and some not. 

• To prevent this kind of situation, we partition the parameter 
vector into G groups.

• We now minimize the following objective 

𝐽 𝒘 = 𝑁𝐿𝐿 𝒘 + 

𝑔=1

𝐺

𝜆𝑔 𝑤𝑔
2

where 𝑤𝑔
2
=  𝑗∈g𝑤𝑗

2

• If NLL (Negative Log Likelihood) is least squares, this method 
is called the group lasso.



Group lasso

• We often use a larger penalty for larger groups, by 
setting 𝜆𝑔 = 𝜆 𝑑𝑔, where 𝑑𝑔is the number of 
elements in group 𝑔.

• For example, if we have groups {1, 2} and {3, 4, 5}, the 
objective becomes
𝐽 𝒘

= NLL 𝐰 + 𝜆[ 2 𝑤1
2 +𝑤2

2 + 3 𝑤3
2 +𝑤4

2 +𝑤5
2]

• Note that if we had used the square of the 2-norms, 
the model would become equivalent to ridge 
regression



Group lasso

• By using the square root, we are penalizing the 
radius of a ball containing the group’s weight 
vector: the only way for the radius to be small is if 
all elements are small. Thus the square root results 
in group sparsity.

• A variant of this technique replaces the 2-norm 
with the infinity-norm. This will also result in group 
sparsity.

i.e 𝑤𝑔
∞
= max

𝑗∈𝑔
|𝑤𝑗|



• An illustration of the difference is shown in Figures 13.13 and 
13.14. In both cases, we have a true signal 𝒘 of size 𝐷 = 212 = 
4096, divided into 64 groups each of size 64. 

• We randomly choose 8 groups of 𝒘 and assign them non-zero 
values. In the first example, the values are drawn from a 𝒩(0, 1). 

• In the second example, the values are all set to 1. We then pick a 
random design matrix 𝑿 of size 𝑁 × 𝐷, where 𝑁 = 210=1024 

• Finally, we generate 𝑦 = 𝑋𝑤 + 𝜖 , where 𝜖~𝒩(0,10−4𝑰𝑁). 

• Given this data, we estimate the support of 𝒘 using 𝑙1 or group 
𝑙1and then estimate the non-zero values using least squares. 

• We see that group lasso does a much better job than vanilla lasso, 
since it respects the known group structure. We also see that the 
𝑙∞ norm has a tendency to make all the elements within a block to 
have similar magnitude.



Figure 13.13: Illustration 
of group lasso where the 
original signal is 
piecewise Gaussian. (a) 
top: original signal, 
bottom: vanilla lasso 
estimate.

(b) Top: group lasso 
estimate using a 𝑙2 norm 
on the blocks, bottom: 
group lasso estimate 
using 𝑙∞



Figure 13.14: Illustration 
of group lasso where the 
original signal is piecewise 
constant. (a) top: original 
signal, bottom: vanilla 
lasso estimate.

(b) Top: group lasso 
estimate using a 𝑙2 norm 
on the blocks, bottom: 
group lasso estimate using 
𝑙∞



Algorithms for group lasso

• Proximal Gradient

• EM algorithm



Fused Lasso

• In some problem settings (e.g., functional data 
analysis), we want neighboring coefficients to be 
similar to each other, in addition to being sparse. An 
example is given in Figure 13.16(a), where we want to 
fit a signal that is mostly “off”, but in addition has the 
property that neighboring locations are typically similar 
in value. We can model this by using a prior of the form

𝑝(𝒘|𝜎2) ∝ exp(−
𝜆1
𝜎
 

𝑗=1

𝐷

𝑤𝑗 −
𝜆2
𝜎
 

𝑗=1

𝐷−1

|𝑤𝑗+1 −𝑤𝑗|)

• This is known as the fused lasso penalty



• Figure 13.16 (a) Example of the fused lasso. The 
vertical axis represents array CGH (chromosomal 
genome hybridization) intensity, and the horizontal 
axis represents location along a genome. (b) Noisy 
image. (c) Fused lasso estimate using 2d lattice 
prior



Fused Lasso

• This is known as the fused lasso penalty. In the context of 
functional data analysis, we often use    𝑋 = 𝐼, so there is 
one coefficient for each location in the signal . In this case, 
the overall objective has the form

𝐽 𝒘, 𝜆1, 𝜆2 = 

𝑖=1

𝑁

𝑦𝑖 − 𝑤𝑖
2 + 𝜆1 

𝑖=1

𝑁

𝑤𝑖

+𝜆2 𝑖=1
𝑁−1 𝑤𝑖+1 −𝑤𝑖 )



Fused Lasso

• It is possible to generalize this idea beyond chains, and to 
consider other graph structures, using a penalty of the form

𝐽 𝒘, 𝜆1, 𝜆2 =  𝑠∈𝑉 𝑦𝑠 −𝑤𝑠
2 + 𝜆1 𝑠∈𝑉 |𝑤𝑠|

+𝜆2 𝑠,𝑡 ∈𝐸 𝑤𝑠 −𝑤𝑡 )

• Here, V are the set of vertices and E are the set of edges

• This is called graph-guided fused lasso The graph might 
come from some prior knowledge, e.g., from a database of 
known biological pathways. In the example shown in Figure 
13.16(b-c), the graph structure is a 2d lattice.



Algorithms for fused lasso

• It is possible to generalize the EM algorithm to fit 
the fused lasso model, by exploiting the Markov 
structure of the Gaussian prior for efficiency. 

• Direct solvers (which don’t use the latent variable 
trick) can also be 

• However, this model is undeniably more expensive 
to fit than the other variants we have considered.



Elastic Net
• Disadvantages of LASSO

• If there is a group of variables that are highly correlated 
(e.g., genes that are in the same pathway), then the 
lasso tends to select only one of them, chosen rather 
arbitrarily. It is usually better to select all the relevant 
variables in a group. If we know the grouping structure, 
we can use group lasso, but often we don’t know the 
grouping structure.

• In the D>N case, lasso can select at most N variables 
before it saturates.

• If N>D, but the variables are correlated, it has been 
empirically observed that the prediction performance of 
ridge is better than that of lasso.

(The design matrix is of size 𝑁 X D)



Elastic Net: Vanilla Version
• The vanilla version of the model defines the following objective 

function:

𝐽 𝒘, 𝜆1, 𝜆2 = 𝐲 − 𝐗𝐰
2
+ 𝜆2 𝒘

2

2
+ 𝜆1 𝒘

1

• Notice that this penalty function is strictly convex (assuming 𝜆2> 
0) so there is a unique global minimum, even if X is not full rank.

• Any strictly convex penalty on 𝐰 will exhibit a grouping effect, 
which means that the regression coefficients of highly correlated 
variables tend to be equal (up to a change of sign if they are 
negatively correlated). 

• For example, if two features are equal, so 𝑋:,𝑗 = 𝑋:,𝑘, one can 

show that their estimates are also equal,  𝑤𝑗 =  𝑤𝑘

• By contrast, with lasso, we may have that  𝑤𝑗 = 0 and  𝑤𝑘 ≠ 0 or 

vice versa



Algorithms for Vanilla Elastic Net

• The elastic net problem can be reduced to a lasso problem on 
modified data. In particular (Exercise 13.5),

 𝑿 = 𝑐
𝑿

𝜆2𝑰𝐷
,  𝒚 =

𝒚
𝟎𝐷×1

,

Where 𝑐 = 1 + 𝜆2
−
1

2. Then we solve,

 𝒘 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝒘  𝒚 −  𝑿 𝒘
2
+ 𝑐𝜆1  𝒘

1

and set  𝐰 = 𝑐 𝒘

• We can use LARS to solve this subproblem; this is known as the LARS-
EN algorithm. When using LARS-EN (or other solvers), one typically 
uses cross-validation to select 𝜆1 and 𝜆2



Improved version of Elastic Net

• Unfortunately it turns out that the “vanilla” elastic net does 
not produce functions that predict very accurately, unless it 
is very close to either pure ridge or pure lasso.

• Intuitively the reason is that it performs shrinkage twice: 
once due to the 𝑙2 penalty and again due to the 𝑙1 penalty.

• The solution is simple: undo the 𝑙2 shrinkage by scaling up 
the estimates from the vanilla version.

• In other words, a better estimate (corrected estimate) for 
elastic net is

 𝒘 = 1 + 𝜆2 𝒘



Improved version of ElasticNet

• One can show that the corrected estimates are given as:

 𝒘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘𝒘
𝑇

𝑿𝑇𝑿 + 𝜆2𝑰

1 + 𝜆2
𝒘− 2𝒚𝑇𝑿𝒘+ 𝜆1 𝒘

1

Now,

𝑿𝑇𝑿+𝜆2𝑰

1+𝜆2
= 1 − 𝜌  𝚺 + 𝜌𝑰, where 𝜌 =

𝜆2

1+𝜆2

• So the elastic net is like lasso but where we use a version of 
 𝚺 (covariance matrix) that is shrunk towards 𝑰.


